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Transition in a pipe flow with a superimposed sinusoidal modulation has been studied 
in a straight circular water pipe using laser-Doppler anemometer (LDA) techniques. 
This study has determined the stability-transition boundary in the three-dimensional 
parameter space defined by the mean and modulation Reynolds numbers Re,, Remw 
and the frequency parameter A. Furthermore, it documents the mean passage 
frequency Fp of ‘turbulent plugs’ as functions of Re,, Re,, and A. This study also 
delineates the conditions when plugs occur randomly in time (as in the steady flow) 
or phase-locked with the excitation. The periodic flow requires a new definition of 
the transitional Reynolds number Retr, identified on the basis of the rate of change 
of Fp with Re,,,. The extent of increase or decrease in Retr from the corresponding 
steady flow value depends on A and Re,,. At any Re, and Re,,, maximum 
stabilization occurs at A z 5.  With increasing Re,,, the ‘stabilization bandwidth ’ 
of modulation frequencies increases and then abruptly decreases after levelling off. 
The maximum stabilization bandwidth depends strongly on Re,, decreasing with 
increasing Re,. Previously reported observations of turbulence during deceleration, 
followed by a relaminarization during acceleration, can be explained in terms of a 
new phenomenon : namely, periodic modulation produces longitudinally periodic 
cells of turbulent fluid ‘plugs’ which differ in structural details from ‘puffs’ or ‘slugs’ 
in steady transitional pipe flows and are called patches. The length of a patch could 
be increased continuously from zero to the entire pipe length by increasing Re,. This 
tends to question the concept that all turbulent plugs (and even the fully-turbulent 
pipe flow) consists of many identical elementary plugs as basic ‘building blocks ’. 

1. Introduction 
Transition from laminar to turbulent flow has for long captured the curiosity of 

fluid dynamicists, not only because it is a fascinating topic of unique mathematical 
challenge, but also because an understanding of transition may lead to its suppression 
and hence to a reduction of drag or to an understanding of the resulting shear-flow 
turbulence. In fact, an understanding of instability waves may lead to an under- 
standing of wavelike or organized motions in turbulent shear flows, the motions 
being presumed to be dominated by such waves (Landahll967; Reynolds & Hussain 
1972) and coherent structures (Roshko 1976; Cantwell 1981). 

The instability of the circular Poiseuille flow continues to remain elusive both 
analytically and experimentally. The linearized stability problem for the fully- 
developed pipe flow seems to possess no finite critical Reynolds number, and 
therefore presumably exhibits no bifurcation point. That is, according to the linear 
theory, this flow is stable ‘to infinitesimal disturbances up to infinite Reynolds 
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numbers (e.g. Gill 1965; Lessen, Sadler & Liu 1968; Davey & Drazin 1969; Garg & 
Rouleau 1972; Rosenblat & Davis 1979). A nonlinear instability theory is an obvious 
possibility to be considered for this flow, but i t  could not yet be developed in a 
classical way because of the lack of a neutral curve or a critical Reynolds number 
for infinitesimal disturbances. Analytical approaches for nonlinear instability have 
produced controversial results (Itoh 1977; Davey & Nguyen 1971), while direct 
numerical simulation (Patera & Orszag 1981) failed to reveal any instability at  all. 
Davey & Nguyen’s and Itoh’s theories, based on the weakly nonlinear Stuart-Watson 
formalism which alters the linear stability properties of a flow field only slightly 
(Stuart 1960 ; Watson 1960), should not be expected to resolve nonlinear instability 
of circular Poiseuille flow because such theories are valid only near the linear neutral 
curve-a curve that presumably does not exist for circular Poiseuille flow. In  
contrast, strong nonlinear theories that can alter significantly the stability properties 
of a given flow appear to hold some hope for the circular Poiseuille flow. In this 
respect, the analyses of Benney & Bergeron (1969) and Davis (1969), which address 
the fully nonlinear critical layer, appear promising, even though applicable only at  
large Reynolds numbers. The stability of the pipe flow, therefore, continues to remain 
an outstanding challenge to the theoreticians. However, while pipe flows can be kept 
stable up to very large Reynolds numbers if care is taken to suppress disturbances, 
all pipe flows do become turbulent if the Reynolds number is sufficiently large. 
Instability in the entrance region, where the parabolic profile is not yet attained, may 
appear as one likely explanation for transition in practical pipe flows (Tatsumi 1952; 
Gill 1965); a variety of other possibilities have also been suggested (Mackrodt 1976; 
Hocking 1977; Smith 1979). 

The analysis of Rosenblat & Davis (1979) represents a departure from the classical 
approaches such as the Poincar6Hopf bifurcation theory or the Landau-Stuark 
Watson (amplitude equation) formulation. Spurred by the computational results 
that there exists a set of disturbances whose decay rates tend to zero as the pipe 
Reynolds number Re+co, they suggest that for the pipe flow, which has no 
bifurcation point at finite Re, the Re = 00 represents a bifurcation point. This in 
effect claims that the pipe-flow instability is a strongly nonlinear problem (the 
viscous and inertia effects being comparable at  Re + a), while the classical bifurcation 
or instability theories as well as small-norm bifurcating solutions (e.g. Davey & 
Nguyen 1971 ; Itoh 1977) relate only to weakly-nonlinear problems. This ‘ birfurcation 
from infinity ’ concept appears very attractive but it is yet to be exploited theoretically 
or numerically to solve the pipe-flow-instability problem. 

In this context, the recent theoretical analysis of circular-pipe-flow instability for 
non-symmetric disturbances at large Re by Smith & Bodonyi (1982) is particularly 
interesting. They have been able to show that neutral solutions exist for non- 
dimensional wavespeeds in the range 0.284-1 when the azimuthal wavenumber is 1 ,  
that the critical layer is fully nonlinear and three-dimensional and that the velocity 
jump and in particular the phase jump across the critical layer is small (of order 
Re-t). The structure of this mainly inviscid critical layer, not unlike those studied 
by Benney & Bergeron (1969) and Davis (1969), is in striking contrast with either 
the classical linear viscous critical layer (Lin 1955; Drazin & Reid 1981) or even the 
nonlinear viscous critical layers studied by Haberman (1972) and Brown & Stewartson 
(1980). Smith & Bodonyi also infer that no similar neutral mode exists outside the 
wavespeed range given above. Experimental verification of these results as well as 
further extension of the analysis is needed. 

Transition in the steady pipe flow has been the focus of many investigations 
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starting with Osborne Reynolds in the 1880s. Experiments by him and others (for 
example, Lindgren 1957 ; Wygnanski & Champagne 1973) showed that the transitional 
flow consists of turbulent regions interspersed with laminar flows. These regions, 
previously characterized as ‘puffs’ and ‘slugs’ (explained in $3.1), will be called 
‘plugs ’ in this paper. That is, plugs generically denote puffs, slugs, patches (discussed 
later) and other possible structures in pipe flows. ‘Plug’ will be used whenever the 
identification of a particular structure is unnecessary. Even though a great deal of 
attention has been paid to the details of puffs and some to slugs, experimental 
observations of transition in even the steady flow continue to raise many unanswered 
fundamental questions. These include questions regarding the mechanisms of en- 
trainment, detrainment and production, and the topological details and roles of 
constituent sub-regions of these structures. 

Far less is known about transition in an unsteady, in particular, pulsatile, pipe 
flow. This flow is of especial interest because of its relevance to various technological 
situations (for example, in Stokes layers on surfaces exposed to water waves, in pipe 
flows from and to positive displacement pumps, in hydraulic and pneumatic control 
systems, in liquid propellant rockets, etc.) and vascular flows (for example, Nerem 
& Seed 1972; Anliker et al. 1977) as well as the curiosity naturally provoked by its 
dynamics. In particular, an understanding of wave-wave interactions or the later 
stage of transition to turbulence can be facilitated by studies of instability of 
time-periodic flows (Greenspan & Benney 1963). 

The modulated flow problem is characterized by the following non-dimensional 
parameters : 

h = D(w/4L)i frequency parameter, 

Re, = Urn D/v mean Reynolds number, 

Remw = Urn, D/v 

Recw = Ucw D/v 
modulation Reynolds numbers, 

A = Urn,/Urn = Re,,/Re, modulation velocity amplitude, 

Fp = f b D / U m  plug passage frequency, 

where D is the pipe diameter; w ( = 27c f,) is the circular frequency of pulsation ; Urn is 
the time-mean of the cross-sectional average velocity Um(t)  ; Urn, is the modulation 
amplitude of Urn(t);  U,, is the velocity modulation amplitude at the centreline; and 
v is the kinematic viscosity. For a discussion of analysis and experiments in pulsatile 
laminar and turbulent flows, see Hussain (1977). 

The periodic modulation can stabilize the flow since periodic modulation introduces 
a displacement effect reducing the effective diameter of the more instability- 
susceptible core flow and hence reducing the effective Reynolds number, Re (Davis 
1976). That is, when modulated appropriately, the flow Re can be increased in 
practice without causing transition, so that the effective Re (and not the pipe Re) 
is indeed the transitional Reynolds number. (This modulation-induced stabilization 
is not unlike the stabilization of an inverted pendulum brought about by oscillating 
the fulcrum.) On an independent basis, modulation also can destabilize the flow since 
modulation produces inflectional profiles which are inviscidly unstable according to 
the Rayleigh criterion (see, for example, Lin 1955; Drazin & Reid 1981). However, 
the modulation-induced Stokes layer has been found to be stable to infinitesimal 
disturbances (von Kerczek & Davis 1974) and hence disallows the development of 
a nonlinear theory (because of the unavailability of a critical Reynolds number based 
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on the linear theory). It is interesting to note that Davis (1976) speculated that the 
stability of the inflectional profile in a periodic flow was due to the fact that too short 
a time was allowed for the growth to manifest itself before the basic state was 
modified. That is, he suggested that if the frequency is low, inflectional profiles will 
be unstable, as is to be expected from the Rayleigh criterion. This provocative 
speculation has remained untested. I t  is worth noting that Tozzi’s (1982) computation 
failed to  show instability due to inflectional profile in a pipe. 

Among time-dependent flows with a non-zero mean velocity, the plane Poiseuille 
flow has been most widely studied theoretically. This flow should also be relevant 
to unsteady pipe flow, as the wall curvature can be neglected if the Stokes layer 
thickness is much smaller than the pipe radius (i.e. at high frequencies). In  general, 
theoretical and numerical studies (for example, Grosch & Salwen 1968; Herbert 1972 ; 
Hall 1975; von Kerczek 1982) have predicted stabilization of the flow due to periodic 
modulation. Hall and von Kerczek independently showed that very high oscillation 
frequencies destabilized the plane Poiseuille flow. Von Kerczek found a slight 
destabilization a t  very low modulation frequencies. At intermediate oscillation 
frequencies the results of Grosch & Salwen and von Kerczek strongly disagree. 
Whereas Grosch & Salwen predict an abrupt destabilization of the flow at  high 
amplitudes of modulation ( A  > 0.105), von Kerczek dismisses this prediction as 
‘unlikely’ on the basis of theoretical analysis valid for d < 0.25. 

Very limited theoretical work has been done on the stability of oscillating circular 
Poiseuille flow. Tozzi (1982) found a modulation-induced stabilization of the flow up 
to very high modulation amplitudes. This is not in accord with experimental results, 
which show a destabilization of the flow even a t  comparatively lower A .  

The stability of periodic pipe flow has been experimentally studied by a number 
of researchers. Instability of a sinusoidally modulated pipe flow with zero mean has 
been investigated by Merkli & Thomann (1974, Sergeev (1966) and Hino, Sawamoto 
& Takasu (1976). Sergeev found a linear increase of the critical Reynolds number 
with increasing A. Merkli & Thomann found that turbulence occurs in the form of 
periodic bursts which are followed by relaminarization in each cycle. 

Instability of periodic pipe flow with non-zero mean flow has been investigated by 
Gilbrech & Combs (1963), Sarpkaya (1966) and Yellin (1966). Of these, Sarpkaya’s 
study is the most comprehensive, but covered only a limited h range, namely, 
4 ,< A < 7.8. He found that the flow modulation had a considerable effect on the 
critical Reynolds number Recr, defined as that value of Re, above which disturbances, 
artificially induced in the fully-developed region, grew downstream. His steady flow 
remained laminar up to  Re, = 6500. His experiments thus show the effect of flow 
modulation on the growth of artificially created disturbances over the h range 4-7.8. 
The present paper investigates the effect of sinusoidal oscillations on the survival of 
turbulent patches formed naturally from highly disturbed pipe inlet for a much 
larger frequency range, namely, 1 < A < 70. 

The effects of flow modulation on fully-turbulent flow a t  low mean Reynolds 
numbers was investigated by Shemer & Wygnanski (1981) and Ramaprian & Tu 
(1980); the latter also did a few experiments a t  transitional Reynolds numbers. 

In none of the studies on transition in unsteady pipe flow with a non-zero mean 
Reynolds number have the laminar-transition boundaries in the three-dimensional 
(Re,, Re,,, A )  space been determined. This work primarily provides the much needed 
laminar-transition boundaries which are likely to be helpful toward an understanding 
of this fundamental problem and perhaps toward development/validation of an 
instability theory of pulsatile pipe flow. 
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Turbulent plugs like puffs and slugs are not well understood even in steady pipe 
flow, and very little is known about the effect of flow modulation on the structure 
of such plugs. I n  this paper, we also discuss turbulent plugs in the transitional 
unsteady pipe flow ; further quantitative details of their topological features are 
being explored in a separate study (Stettler, Zaman & Hussain 1986). 

2. Apparatus and procedures 
The experiments were carried out in a Plexiglas pipe of diameter D = 2.54 cm and 

a total length of approximately 5500 (see figure 1 a). The pipe was assembled from 
8 individual pieces, which were faced squarely on a lathe and joined together by 
Plexiglas slip couplings. Water entered the pipe from a constant head tank through 
a bell-shaped contraction, followed by an orifice plate (in order to induce a highly 
disturbed entry flow) having an opening of 1.2 cm in diameter. The location of the 
orifice plate identifies the origin (i.e. x = 0) of the longitudinal coordinate. The data 
presented in this paper (figures 4, 8 and 9) and thus the laminar-transition 
boundaries (figures 11-16) proved to be independent of the nature of the entry 
roughness. The Fp us. Re, curves in figures 4, 8 and 9 were reproduced for various 
entry conditions, namely; a small disc suspended at the pipe centre, a circular 
cylinder placed perpendicular to the pipe at inlet, and an orifice plate with a smaller 
diameter. 

Measurements were made primarily at  x / D  = 330, with a few at x / D  = 16,45 and 
110. These latter stations were investigated mainly to document the flow evolution 
along the length of the pipe. At x / D  = 330, the flow is free from the effects of 
non-axisymmetry of the periodic opening at the downstream end of the pipe as well 
as any possible asymmetry of the entry flow. Thus, the flow is both axisymmetric 
and fully developed as confirmed by the agreement of the profile measured via LDA 
with the theoretical Poiseuille flow profile (figure Id). (Comparison of the unsteady 
flow profiles with theoretical profiles will be discussed by Stettler et a?. 1986.) The 
large obstruction at the pipe exit minimized the effect of the relative fraction of 
laminar and turbulent flows inside the pipe on the total pressure drop; the flow was 
therefore not self-regulated. At  the downstream end of the closed pipe, a narrow 
rectangular slot was cut into the pipe wall. A sinusoidal flow modulation with a 
non-zero mean was obtained by rotating a sleeve (with its end cut a t  a certain angle, 
see figure 1 c) which periodically covered and uncovered the slot, thus opening and 
closing the exit cross-section sinusoidally ; see Schultz-Grunow (1940). A d.c.-motor 
with a variable speed control was used to rotate the sleeve at selected speeds. Care 
was taken to ensure negligible harmonic content of the modulation. To this end, the 
frequency spectrum of the longitudinal velocity signal at the pipe centreline was 
determined for laminar flow at each excitation condition. The amplitude of the first 
harmonic was always less than 5 %  of the fundamental, with no detectable higher 
harmonics. 

A 35 mW He-Ne laser in conjunction with a counter-type signal processor (TSI 
Model 1990) was used in the dual-beam forward-scattering mode (see figure 16)  to 
obtain the longitudinal velocity signal. The focal length of both the focusing and 
receiving lenses was 120 mrn, which resulted in a length of the major axis of the 
measuring volume of approximately 1 mm. This comparatively large size of the 
measuring volume was not critical in our experiments, as we were primarily 
interested in detecting turbulent plugs in between laminar flows. Frequency shifting 
of one laser beam was employed to optimize the filter setting of the LDA counter 
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FIGURE 1.  (a) Schematic of the flow facility; (a) LDA system set-up; (c) Schematic of the pulsation 
device at the pipe exit and measuring tanks to determine the flow rate; ( d )  Longitudinal velocity 
profile measured with the LDA-system and compared with the Poiseuille profile (line). 

in order to remove the pedestal and high frequency noise, as well as to detect flow 
reversal. (The counter was operated in manual, N-cycle mode with N = 8 for most 
cases.) The LDA system rested on a table whose top plate could be traversed with 
a backlash-free traversing mechanism. The axial velocity could, therefore, be easily 
measured for different radial and axial locations, without realigning the optical 
system at each measuring point. Natural seeding of the water was enough to ensure 
a continuous velocity signal of the analog output of the counter. The temperature 
of the water was kept constant (24 "C) to ensure a constant value of the viscosity. 

2.1. Measurement and alteration of Re,, Re,, and A 
A series of calibrated tanks with START and STOP marks on narrow pipes above and 
below the tanks (to assure accurate measurements of filling times) were used to 
measure the mean Reynolds number Re,. By having the four valves ( 1 4 )  in 
figure l ( c )  either open or closed (in various combinations), the actual measured 
volume could be optimized to minimize the measuring time without sacrificing 
accuracy. The frequency w of flow modulation was measured from the time period 
for an integral number of cycles, and U,, (and thus Re,,) was obtained from the 
centreline velocity traces on a storage oscilloscope. 

Since transition in a practical pipe flow occurs in the form of random turbulent 
plugs travelling down the pipe, Reco will vary depending on whether it is measured 
for a period of laminar flow or a period of turbulent flow. At the onset of transition, 
however, the flow is fully laminar most of the time, and we defined Recw with Uc, 
measured for a period of laminar flow. When the slot is fully covered, Urn, becomes 
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FIQURE 2. (a) Remo 08. A calibration curves for 7 different sleeves; (a) Ratio between modulation 
amplitudes of the cross-sectional-mean velocity and the centreline velocity, RemolRe,,, as a 
function of A. 

equal to Urn and, thus, can be measured as discussed. Our experimentally obtained 
Re,JRe,, vs. h curve in figure 2 (b) shows that Re,,/Re,, is strongly A-dependent 
only for 3 < h < 10 (Uchida 1956). 

The modulation amplitude could be varied by changing the exit slot at the down- 
stream end of the Plexiglass pipe and/or by changing the sleeve angle (figure ic ) .  
Due to  the inertia effect of the water column inside the 550D long pipe, an 
increase in h reduced the modulation amplitude. Figure 2 (a) indicates the nature of 
the Remw - h relationship used as calibration curves for a few sleeves ; these were used 
to set selected operating points (Remw, A) .  The Re, value could easily be varied by 
changing the relative displacement Ax of the sleeve with respect to the slot opening 
(see figure i c ) ,  and the frequency parameter h was varied by controlling the voltage 
to the d.c.-motor. Note that Remw decreased monotonically with increasing A for each 
sleeve. 
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3. Results and discussion 
3.1. Transition in steady pipe $ow 

Before studying the modulated pipe flow, the steady flow and its transition 
characteristics were investigated first. A well-defined transition regime exists for the 
steady pipe flow with a highly disturbed entrance. For Re, between 2000 and 2700, 
the pipe flow consists of longitudinally separated regions of turbulent plugs called 
puffs. These differ from slugs which were first reported by Osborne Reynolds to occur 
in a somewhat higher Reynolds number range. There have been speculations in the 
past about the various possible turbulent structures that may occur in the steady 
pipe flow at transitional Reynolds numbers; scc, for example, Morkovin (1977). 
Various attempts were made to classify them into puffs and slugs, but a clear 
definition is still lacking. For instance, Coles (1981) calls puffs those turbulent plugs 
that occur when the entry flow is highly disturbed and Re, is between 2000 and 2450. 
I n  this Re,-range, succeeding puffs are clearly separated by laminar flow. At higher 
Reynolds numbers (2400 < Re, < 2700) turbulent fluid plugs start to merge and 
interact with each other. Wygnanski & Champagne (1973) refer to  these larger 
structures also as puffs; they classify structures strictly in terms of origin: puffs for 
disturbed entry, and slugs for instability of the developing region boundary layer. 
Rubin, Wygnanski & Haritonidis (1980) claim that slugs result from coalescence of 

Based on our own detailed observations of transition in steady and unsteady pipe 
flows, we prefer the more restrictive definition of Coles. Slugs seem to originate from 
(Tollmien-Schlichting) instability waves of the entry region boundary layer. On the 
other hand, puffs are debris of relaminarization of fully-turbulent flow induced a t  the 
entry by large disturbances or roughness (which can be an  orifice, grid, disc, ctc.). 
Puffs consist of a sharp upstream front and a long (20-30 diameters) quiescent 
downstream region over which turbulent fluid is detrained and relaminarized 
(Bandyopadhyay & Hussain 1985). The upstream boundaries (i.e. back) of slugs 
appear to be similar to  those of puffs - involving breakdown of upstream laminar 
fluid ‘jetting into ’ the turbulent region - but the downstream boundaries (i.e. front) 
of slugs involve intense large-scale vortex entanglement, laminar fluid engulfment, 
and breakdown (Leitko & Hussain 1983). It should be emphasized that the backs of 
puffs and slugs and the fronts of slugs, even though sharp, are not flat smooth 
surfaces perpendicular to the pipe axis, but are highly contorted interfaces occupying 
a few diameters in streamwise extent. 

Figure 3 ( a )  shows the characteristic ‘footprint’ of a turbulent puff in steady 
flow. The slow drop in centreline velocity, as the front (at smaller time) is 
approached, is a result of the change of the velocity profile, from a parabolic one for 
laminar flow downstream of the puff, to a fuller profile for turbulent flow inside the 
puff; of course, close to the wall, the axial velocity will rise within the puff. The 
transition between the turbulent interior and the laminar exterior flow at the front 
of the puff is gradual, whereas the back (at  larger time) is very sharp. This is typical 
of a puff. I n  contrast, the front and back (i.e. leading and trailing) interfaces of a 
slug are equally sharp. The velocity trace in figure 3(a)  furthermore shows that the 
turbulence intensity is high close to  the trailing end. This is associated with roll-up 
and breakdown of laminar fluid jetting into the slower-moving turbulent puff; this 
jetting action produces a roll-up and subsequent breakdown into turbulence. This 
inviscid production is the mechanism for indefinite sustenance of the ‘equilibrium 
puff’ (Bandyopadhyay & Hussain 1985). Due to the absence of any production 

puffs. 
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FIQURE 3. Centreline velocity signals in steady and unsteady transitional pipe flows at x / D  = 330. 
(a )  Random puff in steady flow, Re,,, N 2100; ( b )  Random puff in unsteady flow, Re,,, ‘Y 2100; 
Remw = 600; A = 21; (c) Phase-locked turbulent ‘patch’ at x / D  = 330 and x / D  = 337, 
Re, = 1760, Remw = 1410, A = 10. 

mechanism after breakdown, turbulence decays gradually, and the turbulent fluid 
relaminarizes at the front. 

The gradual change of the turbulence intensity a t  the front of a puff makes the 
detection of the front interface and the measurement of the intermittency factor (i.e. 
the percentage of time the flow is turbulent), for transitional flow with highly 
disturbed entry, both imprecise and subjective. On the other hand, the average 
passage frequency fp of the plugs can be measured fairly accurately, especially a t  
lower Re, ranges. 

For steady flows, no turbulent plug was observed for Re, below 2000. This is in 
general agreement with the literature (Lindgren 1957 ; Wygnanski & Champagne 
1973), even though Ramaprian & Tu (1980) observed transition a t  Re, = 1750 
and fully turbulent pipe flow a t  Re, = 2000. Figure 4 shows that, for 
2000 < Re, < 2350, the non-dimensional plug frequency Fp ( = fp D/U,) increases 
linearly with Re, i.e. Fp ci (Re,-2000) until Fp reaches a maximum value a t  
Re, z 2350. As Re, is further increased, Fp progressively decreases until 
Re, N 2700, above which the flow becomes fully turbulent. This decrease in Fp for 
higher Re, values is due to  the fact that  successions of plugs merge forming larger 
plugs. Thus, the plug count is somewhat ambiguous at higher Re,. The differences 
a t  higher Re, between the present Fp data and those reported by Wygnanski & 
Champagne (also shown in figure 4) are therefore not of any obvious significance in 
the context of the present paper. 

The important and often-raised question (see Coles 1981) of reproducibility among 
the various experiments can therefore, at least for steady flow conditions, be 
answered satisfactorily. Inadequate data in the literature on unsteady flow transition 
prevent us from comparing our data with any other. However, unsteady flow data 
presented in this paper proved to be repeatable over a period of two years; note that 
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FIQURE 4. Passage frequency of turbulent puffs at 3300 downstream. *, steady flow; 0,  unsteady 
flow ( A  = 10, Remw = 565); and V, steady flow data of Wygnanski & Champagne (1973). 

Ramaprian & Tu (1980), for example, had problems in reproducing their data. As 
already mentioned, our data proved to be independent of the entrance disturbance 
as long as Retr of the steady flow was 2000. The effect of flow modulation on transition 
with streamlined entry (for which Retr > 2000 for steady flow) will be investigated 
in a later study. 

3.2. Transition in pulsatile pipe Pow 
LDA signals at the pipe centreline capturing turbulent plugs in pulsatile flows at  
z / D  = 330 are shown in figures 3 (b-c) and at z / D  = 337 also in figure 3 (c). At a high 
frequency, say, h > 10, and moderate modulation amplitudes, say, Remw ;5 1200, the 
turbulent plugs occurred randomly in time, similar to the case in steady flow. 
Likewise in a steady flow puff, the front of the plug is not well defined and the trailing 
end is quite sharp. Note that for large A values, the decrease in the velocity from the 
front to the back is quite gradual, occupying several oscillation periods (figure 3b).  
In  this study no attempt is made to investigate in detail the turbulent structure 
inside the plug. A velocity drop (at the pipe centreline) is still detectable, as the plug 
passes by. A t  high h values, however, this velocity defect is not as distinct as in the 
case of puffs in steady flow. This is quite likely to be due to the fact that the profile 
in the laminar part (at high h values) is flatter and not pointed like the Poiseuille 
profile (see Uchida 1956), so that the ‘jetting action’ is weakened or eliminated. 
High A values combined with high modulation amplitudes lead to flow conditions 
where the plugs occur phase-locked with the flow modulation (figure 3c). These 
phase-locked plugs in modulated flow are termed by us as ‘patches’ (further 
discussed later). 

A separate study (Stettler et al. 1986) shows that the structure inside a turbulent 
plug when it occurs phase-locked with the flow modulation (figure 3c) is quite 
different from that in a steady flow puff, which has been mapped via ensemble 
average data by Wygnanski, Sokolov & Friedman (1975) and visualized by Bandy- 
opadhyay & Hussain (1985). For the patches observed at low frequencies, say, h < 4, 
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FIGURE 5. Longitudinal velocity traces at various radial positions for a phase-locked turbulent 
‘patch’ at x lD = 330; A = 3.5; Re,,, = 3840; Remw = 1400. 

the centreline velocity defect again becomes more noticeable (figure 5 ) .  The drop in 
the velocity as the structure approaches is abrupt, indicating a sharp leading front. 
This contrasts with the steady flow puff where the velocity drop a t  the front is very 
gradual (figure 3a).  The trailing (back) interface in figure 5 is not well defined, and 
the high turbulence intensity at the back of the typical puff or slug is also missing. 
Thus, the signature of the patch is quite different from that of the puff and the slug. 
The velocity traces shown in figure 5 also indicate that the highest turbulence 
intensity does not occur on the centreline as in a puff. (The fluctuation amplitude 
a t  the centreline is noticeably lower than at r / D  x 0.4 where there seems to be some 
small-scale turbulence even outside the patch.) Note that the downstream front is 
the sharpest at the centreline. Nearer to the wall, there is some turbulence activity 
even before the front arrives. 

The difference between a patch and a puff is further documented in figure 6, which 
shows velocity signals of a steady-flow puff and a phase-locked patch after the signals 
have been high-pass filtered (to remove lower-frequency velocity undulations and 
thus accentuate the footprint of the fine-scale turbulence in the two structures). Note 
that in the pulsatile flow, turbulence on the centreline increases much more abruptly 
near the downstream front of the patch (figure 6 b )  as opposed to the case of puff (figure 
6a) ,  where turbulence is concent,rated near the back (upstream end). Figure 6 (c) 
shows that, as opposed to the situation in a puff, the turbulence level in a patch is 
higher closer to the wall. 

For values of h and Remw comparable to  those in figure 5 ,  oscilloscope traces 
obtained a t  low Re, values are shown in figures 7(a-d).  At these low Re,,, values, 
turbulence does not occur in every cycle; several modulation cycles of fully laminar 
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FIGURE 6. Longitudinal velocity signatures of turbulent ‘plugs’ after high-pass filtering: (a) on 
centreline of a turbulent ‘puff’ in steady flow; (b) phase-locked turbulent ‘patch’, ( A  = 4,  
Re, = 3000, Remo = 1400) a t  the centreline; (c) same as case (b) but close to the wall ( r / D  = 0.47). 

FIGURE 7. (a)-@) Centreline velocity traces showing turbulent ‘patches’ of increasing length 
with increasing Re, for low-frequency oscillation. (a) Re,,, ‘Y Re,,; ( b )  Re,,, = Re,,+25; ( c )  
Re, = Re,+50; ( d )  Re,,, = Re,, + 80. (e)-(g)  Same turbulent patch observed at increasing distances 
from the pipe inlet: ( h = 4 ;  Re,= 2050; Re,,=2050); ( e )  x / D =  16; (f) x / D = 4 5 ;  ( g )  
x / D  = 110. 

flow are possible between two succeeding plugs. This made it somewhat difficult to 
‘capture’ the signature of such a plug. Rubin et al. (1980) speculated that the 
equilibrium puff may be a basic building block in a fully developed pipe flow. Figures 
7 (a&) clearly show that for transition in unsteady pipe flow, no ‘basic block ’ of a 
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minimum length exists out of which all possible turbulent plugs may be created 
through superposition and mutual interaction. To the contrary, the increase of the 
plug length with increasing Re, is very gradual from zero to the entire length of the 
pipe. In  addition, as figure 5 shows, turbulence at higher Re, occurs truly phase 
locked with the flow-modulation. Clearly, steady and unsteady flow transitions are 
different; our study of pulsatile flow, which allows control of the plug length to any 
selected value, throws some doubt on the building-block concept. 

Velocity traces at increasing distances from the pipe entry are depicted in figures 
7(e-g). (Traces from a downstream station, for instance x / D  = 330, do not differ 
much from those taken a t  x / D  = 110.) We found that depending on the values of 
Re,, Remw and A ,  a turbulent ‘plug’ may shrink or grow in length for roughly the 
first 100 pipe diameters. After that, it reaches something of an equilibrium state with 
its length remaining unchanged. This conclusion was further strengthened by 
measuring fp for some steady and unsteady flow conditions at x / D  = 110. It turned 
out that for the flow conditions investigated, this frequency did not decrease with 
increasing x / D  as Rotta (1966) concluded, but rather it remained constant, in 
agreement with Wygnanski & Champagne’s (1973) observations. 

From figures 3, 5 and 7 it is clear that turbulent plugs occur at  different phases 
of the modulation period, depending on x / D ,  h or Re,. This interesting phenomenon 
has not been reported in the literature. We have observed that the entire flow inside 
the pipe does not spontaneously break down into turbulence during deceleration 
followed by a relaminarization during the acceleration of the flow, as has been 
claimed by several investigators (Yellin 1966 ; Shemer & Wygnanski 1981). Of course, 
the concept of a periodic breakdown into turbulence followed by a relaminarization 
of the entire flow inside the pipe is difficult to support, as the timescale for the 
destruction of the turbulent energy (via dissipation) is typically much larger than 
the typical period of oscillation. To the contrary, our observations (figures 3, 5, 7) 
indicate periodic creation of turbulent patches at the pipe entry (figure 7e) .  These 
patches are then convected down the pipe at their own celerity. The turbulent 
patches are detected at larger x / D  at later phases in the cycle. Thus patches occur 
in longitudinally periodic cells separated by laminar flow. The phase locked turbulent 
patches are of special interest; detailed eduction of various coherent quantities and 
structural details can be made easily, using well-established phase-averaging 
techniques (Stettler et al. 1986; Hussain 1977). The difficulties in educing structural 
details in randomly occurring puffs and slugs in steady-flow experiments are 
considerably greater. 

Figure 4 also shows the average plug frequency Fp as a function of Re, for a 
sinusoidally modulated flow. For Re, < 2350, the Fp values for modulated flow are 
lower than those for steady flow, and the Fp us. Re, curve consists of two linear 
regions with a sudden change in the slope a t  Re, x 2200. For Re, > 2350, Fp does 
not seem to be affected by the flow modulation. Due to the puff-count ambiguity at 
these high Re, values (mentioned earlier), however, a possible effect of the flow 
modulation on Fp can neither be confirmed nor excluded. We restricted our study to 
the influence of a harmonica1 flow modulation on the onset of transition in situations 
where Fp can be determined unambiguously (figures 8, 9). 

Figures 8 (a-d) show the plug frequency Fp as a function of Re, for different values 
of Remo and A. In  general, for a given modulation frequency, the plug frequency Fp 
decreases with increasing amplitude of modulation. For all modulation amplitudes 
documented in figure 8(a) ,  the turbulent plugs occurred randomly in time. At  this 
relatively high h value, the lock-in of turbulence with the modulation period (when 
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velocity traces become similar to that in figure 3c) is quite sensitive to small changes 
in the modulation amplitude. That is, the shift from phase-random to phase-locked 
plug formation occurs in a small but highly reproducible range of the modulation 
amplitude. When they occur phase-locked, small turbulent patches are observed at 
fairly low mean Reynolds numbers (Re, > 1400). For 5 < A < 10, the Fp vs. Re, 
curves show the same characteristic trends a.8 the one shown in figure 8 (a). However, 
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FIQURE 9. Fp-vs.-Re, curves for various A at fixed Recw ( = 880). 

this is no longer the case for A = 4 and Remw > 1100, for which the turbulent plugs 
start to occur a t  a preferred phase of each cycle (figure 8 b ) .  

For example, for Remw = 11 10 and Re, < 2540, no plugs are observed, and the flow 
is therefore fully laminar for all time. Increasing the mean Reynolds number Re, 
results in the occurrence of small disturbances, similar to the ones shown in figure 7. 
Furthermore, there is a jitter in the phase a t  which those disturbances occur, and 
sometimes several cycles of fully laminar flow occur between two succeeding 
disturbances. Plugs occur for Re, > 2540. The relative number of cycles containing 
a plug in each cycle increases until Re, x 2810. There is a corresponding progressive 
increase in the length of the plugs and turbulent intensity. For Re, > 2810 these 
plugs are phase locked with the flow modulation. The centreline velocity signal for 
this case would then be similar to  the one shown in figure 5. Once a Re, value is 
reached for which the plug occurs phase locked, a further increase in Re, results in 
a growth in length of these turbulence patches until the flow is turbulent throughout 
the entire cycle of modulation, that is, the pipe flow becomes fully turbulent all the 
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time. The case where two or even more turbulent patches arc observed during one 
cycle is rare. 

Decreasing A even further (i.e. for A < 3.5) results in a decrease of the minimum 
modulation amplitude needed for the disturbances to occur phase locked; see figure 
8(c) .  For A = 1 and 2, patches occur phase locked at the lowest Re,, investigated 
(i.e. Re,, N 300). In  figure 8(c), each horizontal (i.e. Fp = constant) line indicates the 
Fp value measured for the case of one patch per cycle. Note that the Re, range for 
increase of Fp from zero to this (constant) value decreased as A is decreased. For A = 2 
and 3.5, once the patches occur phase-locked with the flow modulation, an increase 
in Re, increases the duration of these disturbances (i.e. an increase in the length of 
the patches), rather than their number per cycle. For the smallest A investigated (viz. 
A = 1 ,  which corresponds to  the period of oscillation of Tp = 19 minutes), however, 
an increase in the Re, value first results in an increase in the number of turbulent 
patches per cycle. Eventually, a t  even higher Re,, succeeding patches start to  merge 
and interact with each other in a way very similar to plugs in steady flow (for 
Re, > 2300). Therefore, at very low modulation frequencies, the transition from 
laminar flow to turbulent flow is quite similar to that observed in steady flow ; that  
is, the flow behaves as quasi-steady, as is to be expected. It has to  be mentioned that 
for the low frequency parameters shown in figure S(c)  (say A < 3.5), the uncertainty 
in the Fp data is relatively high because of the rather long time needed to  measure 
a sufficiently large number of cycles (required for stable Fp values). Hence, the 
measurements were aimed only at determining the maximum Re, value for which 
the flow remained laminar all the time. The earlier remarks about the slopes of the 
Fp vs. Re, curve therefore apply only qualitatively to the low A cases. Note that for 
A < 3.5, increasing Re,, decreases Retr (figure Sc),  opposite to the trends at higher 
A values (figures Sa, b ) .  This is not unexpected because the flow is quasi-steady a t  
low A values, when instantaneous Re controls transition. 

Figure 8 ( d )  shows that at a very high modulation frequency ( A  = 33), and high 
modulation amplitudes, the Fp v5. Re, curves shift to lower Re, values, with their 
slope becoming very steep with increasing Rem,. In  other words, the mean Reynolds 
number up to which the modulated flow remains laminar is decreased and the 
decrease is larger for a higher modulation amplitude. Note that a t  intermediate 
values (figures 8a,  b ) ,  Fp vs. Re, curves can be shifted to the higher Re, range by 
increasing the modulation amplitude. This is not possible for very high or very low 
modulation frequencies (figures 8c, d ) .  That is, increasing the modulation amplitude 
destabilizes the flow a t  high or low frequencies but stabilizes the flow a t  intermediate 
frequencies. 

The effect of different modulation frequencies on the Fp-Re, relationship is shown 
in figure 9. Decreasing the frequency (at a fixed Re,,) has qualitatively the same effect 
on the Ek-Re, curve as increasing the modulation amplitude over a certain range 
a t  a given A (compare figures 8a and 9). At high A values (figure 9) or low Re,, (figures 
8a, b )  the Fp-Re, curves consist of two linear regions: a line with a lower slope at 
lower Re, values. The slopes of both the linear regions decrease with either increasing 
amplitude of modulation at constant A or decreasing A values at (low) constant 
modulation amplitudes. Note that the slope of the second linear region can be higher 
than the corresponding slope for steady flow (for example, see figure 8a for 
Remw = 250 and figure 9 for A = 21). (This has been observed for h > 5 at low Re,,.) 
Figure 9 shows that at Recw = 880, decreasing A progressively stabilizes the flow until 
A = 5 ,  below which the flow is destabilized again (not shown in this figure but 
discussed later). 
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3.3. Dejnition of transition Reynolds number Retr in unsteady $ow 
The critical Reynolds number Recr is the value of Re below which the flow is stable 
to infinitesimal disturbances of all wavenumbers and frequencies. This theoretical 
quantity can be addressed only via controlled excitation studies, and the quantity 
relevant to  the present study is transition Reynolds number Re,,. Re,, in the pipe 
flow is typically understood as the maximum Reynolds number Re, for which the 
flow remains laminar for all time; in other words, this is the maximum Re, value 
for which Fp is equal to zero. Such a definition would give for our facility the same 
Re,, of 2000- the steady flow value-for many of the curves shown in figures 8 
and 9. The fact that  flow modulation can result in a reduction of the plug passage 
frequency - below the steady flow value - for even low modulation amplitudes 
(figure 8) or high h values (figure 9), will then not be taken into account by such a 
definition. For example, based on this definition, Retr would be 2000 for Re,,,, = 0, 
250,450, or 674 in figure 8 ( a ) ,  and also for h = 0,7,10, or 21 in figure 9. Furthermore, 
such a definition of Re,, would result in a sudden jump of Retr from 2000 to a higher 
value when the first linear region disappears. For example, a t  h = 7.5, the value of 
Re,,, defined in such a way, will jump abruptly from 2000 to  2450 as Remw increases 
above 674 (figure 8a) .  Similarly, it is clear from figure 9 that the value of Re,,, if 
defined the same way, will jump from 2000 (at A = 7)  to 2330 (at A = 6.25). Note that 
the jump in Re,, will be quite abrupt between Remw = 450 and 700 in figure 8(b) .  
(It is also interesting to note that the slope of the Fp-Re, curve for Remw = 11 10 in 
figure 8(b)  is much steeper than that of Remw = 1131 in figure 8 ( a ) ,  demonstrating the 
strong influences of both h and Re,, on Fp variations.) 

Therefore, a general definition of Retr as the maximum Re, value for which the 
plug frequency Fp is zero cannot be used for unsteady pipe flow. One needs to define 
Retr in unsteady flow in a different way. The mean Reynolds number Re, a t  which 
the Fp us. Re, lines in figures 8 , 9  show a change in their slopes seems to indicate an 
intrinsic change in the transition behaviour of the flow, and we define this Re, value 
as the transition Reynolds number Re,, for unsteady flow. This new definition, 
though arbitrary and lacking a rigorous basis, guarantees a continuous variation in 
the Re,, value with Remw a t  a given A,  or with h a t  a given Re,,. Whenever the slope 
of the first linear region becomes zero, Re,, becomes the Re, intercept of the Fp-Re, 
line. Thus, Retr = 2000 becomes a special case when the flow is steady. Figure 10 
shows the approximate minimum modulation amplitudes required for the first linear 
region to disappear. For h = 33, an increase in Remw, above the value shown in figure 
10, will not only cause the slope of the first linear region to become zero, but also 
shift the Fp us. Re, curves to lower Re,, with their slopes becoming very steep (figure 
8d) .  I n  this case, Retr will be less than 2000. Thus, the new definition of Re,, appears 
uniformly consistent in all ranges of the controlling parameters. 

3.4. Transition boundary based on modulation amplitudes 

Following the above-introduced definition, values of Re,, were determined from large 
volumes of Fp wa. Re, data (similar to  those shown in figures 8, 9) collected for 
different ranges of the unsteady flow parameters h and Remw. These Re,, data 
produced the laminar-transition flow boundary in the (Re,, Rem,,,, A )  space. 

Figure 11 (a)  shows Retr as a function of the modulation amplitude Re,,,,, 
parametric in A ;  figure 11 ( b )  presents the corresponding data in terms of A .  For any 
h in the range 3-33, Re,, first increases gradually with increasing Remo up to a point, 
beyond which increasing Re,,,, results in a decrease of Re,,. The drop in Retr is 
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FIQURE 10. Approximate minimum modulation amplitude Remo as a function of A,  for the slope 
of the first linear region of Fp WS. Re, curves (see figures 9 and 10) to become zero. 

extremely abrupt for 4 < A < 10, but gradual for A < 4 or A 2 33. For very high 
modulation amplitudes, Retr can become even less than the steady flow value of 2000 
in the A range up to at least 33. It is interesting to recognize that this sudden decrease 
of Retr is associated with the change in the occurrence of plugs from being a random 
event in time to a phase-locked event. That is, at these high modulation amplitudes, 
the plugs occur phase locked with the flow excitation, and the occurrence of 
phase-locked plugs is accompanied by destabilization of the flow. For lower A values 
(say, A < 3 )  Ret, is always less or equal to the Retr value of the steady flow; that is, 
Retr decreases with increasing values of Re,,. A t  very low modulation frequencies 
( A  - l ) ,  the variation of Retr with Re,, (figure l l a )  agrees well with that expected 
for quasi-steady flow (see figure 12). 

Note that when A ,  instead of Re,,, is chosen as the amplitude parameter, the drop 
in the transitional Reynolds number values, as the modulation amplitude becomes 
very high, seems less abrupt (see figure 1 1  b ) .  Unfortunately, due to experimental 
restrictions, it was not possible to obtain experimental data points on the decreasing 
part of the A - Retr curves for A values in the range 4-10. In our flow facility, i t  is Re,, 
that can be changed directly (with a minimum possible step size of about 30) and 
not A .  Due to the large and abrupt decrease of Retr above a certain critical value of 
Re,, or A (figure l l a ) ,  the minimum possible A size becomes quite large. 

Figure 12 illustrates three flow conditions we have to consider separately. We know 
that the steady flow remains fully laminar for Re, < 2000. If the flow is modulated 
at a very low frequency ( A + O ) ,  then for a given Re,,, turbulence will be observed 
only if 

Re, + Re,, > 2000. 

In addition, the flow will be turbulent only during the time interval when the 

7 P L X  170 



188 J .  C. Stettler and A .  K .  M .  F.  Hussain 

(4 
3200 

2800 

2400 

Re, 

2000 

1600 

1200 

0 400 800 ~ 2 0 0  1600 2000 
Re,, 

I I I I 

0 0.2 0.4 0.6 0.8 1 .O 
A 

FIQURE 11.  Curves separating the laminar-transition regions; 
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FIGURE 12. Transition Reynolds number aa a function of modulation amplitude for quai-steady 
flow conditions (h+O). (a) Remo < 1OOO; ( b )  Remw > 1OOO; (c )  Remw > 1O00, with exit slot fully 
closed during t ,  < t < t,. 

instantaneous Reynolds number Re(t) = Um(t) D / v  is higher than 2000 (figure 12a). 
That is, 

Retr = 2000 -Re,,. 

This equation is plotted in figure 11 (a), and can be viewed as a limiting case (i.e. 
A + O ) .  Experimental data for A = 1 agree with this line (equation (1)  in figure l l a ) .  

At a modulation amplitude Remo = 1000, the (theoretical) dashed line in figure 
1 1  (a) shows a change in slope of 90". This is due to the limitation of our experimental 
apparatus, because instantaneous upstream flow is not permitted. Because the 
instantaneous cross-sectional mean velocity Urn( t ) ,  hence also Re(t), is always positive 
(being equal to zero when the exit slot is fully closed), the minimum mean Reynolds 
number possible is Re, = Re,, (see figure 12b). For the quasi-steady model explained 
above, the flow is transitional at this lowest possible Re,-value, that is, 

Retr < Remw for Remw > 1000. 

(The Retr = Remw curve is also shown in figure 11 (a) as equation (2).) 
The experimental observations produce the unexpected result that at high enough 

Remo all measured Retr ws. Re,, curves become identical with the theoretical curve 
(equation (2)) ; this means that turbulent plugs are observed at the minimum possible 
mean Reynolds number, namely at Re, = Re,,. A few measurements at high Remw 
showed that turbulence occurred for flow conditions Re, < Re,, (figure 12c); 
therefore, the actual transitional Reynolds number Retr is less than the one indicated 
in figure 11 a (the true value of Retr for these cases was not measured because of the 
flow becoming non-sinusoidal) . 
3.4.1. Comparison with theory 

A fair amount of theoretical work has been done on oscillating plane Poiseuille 
flows, which, for high A values, are relevant to our experimental results. Hall (1975) 
found that a high-frequency oscillation slightly reduces the critical Reynolds number 
for all modulation amplitudes. That is, 

&Re = - A 2 ( - f )  307 , 
(3) 

where 6 Re is the percentage reduction in the critical Reynolds number due to the 
oscillation. His result is expected to hold for A > 71. Von Kerczek (1982), though his 
results are not inconsistent with Hall's, indicates that Hall's formula is valid only for 

7-2 
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very high A values ( A  > 110). Our experimental results show a slight increase in Retr 
for h z 33 and Remw < 1100. For this A value, a reduction in Retr is observed only 
at  higher modulation amplitudes (figure 11) .  However, for h = 70, quite close to the 
lower limit given by Hall for equation (3) to be valid, our observations show that 
Retr = 2000 for all modulation amplitudes investigated. This is also consistent with 
equation (3), which predicts 6 Re to be very small for A < 1 when A is large. 

For intermediate and low h values, there is no direct comparison between 
theoretical results on oscillating plane Poiseuille flow and our experimental data. It 
is nevertheless interesting to note that the theoretical analyses by Grosch & Salwen 
(1968), Herbert (1972) and von Kerczek (1982) showed that plane Poiseuille flow can 
be stabilized by oscillation if the modulation is not too large. Our data furthermore 
indicate an abrupt destabilization as the modulation amplitude exceeds a certain 
value (figure 1 1  b ) .  Such a flow destabilization a t  higher A values was also found by 
Grosch & Salwen in their analysis of oscillating plane Poiseuille flow, whereas von 
Kerczek rejects such destabilization as ‘rather unlikely’. Of course, our A values for 
the observed abrupt destabilization are much larger than the values calculated by 
Grosch & Salwen and are also larger than the range permitted by von Kerczek’s 
analysis. 

Tozzi (1982) has theoretically investigated the stability of pulsatile flow in a 
circular pipe; see also Davis (1976). A comparison of these theoretical results with 
the experimental data of Sarpkaya (1966), Gilbrech & Combs (1963) and the present 
results is shown in figure 13. Only some of our results are shown in order not to 
overcrowd this figure. The experimentally determined critical Reynolds number Recr 
values of Sarpkaya (1966) and Gilbrech & Combs (1963) are based on a positive 
growth of small disturbances. To avoid any confusion with our transition study, we 
defined the change SRe in terms of the transition Reynolds number Retr, whereas 
they refer to theirs in terms of the critical Reynolds number Re,,. Note that 
Sarpkaya’s (1966) measurements also show a sudden decrease in Re,, as A is 
increased above a certain value. In spite of the fact that our experiment on the 
survival of hrbulent plugs is quite different from Sarpkaya’s study of growth of 
imposed controlled perturbations, the similar trends of variations of Re,, and Retr 
are not surprising (figure 13). This indicates that our data based on survival of plugs 
are perhaps quite relevant to the instability of the pipe flow. 

In agreement with many other theoretical studies (e.g. Patera & Orszag 1981) 
Tozzi (1982) finds that the disturbance growth rate in steady pipe flow at Re, = 2200 
is negative, indicating laminar flow up to higher Reynolds number. Tozzi then defines 
the growth rate of the least stable disturbance mode of the steady flow a t  Re, = 2200 
as the ‘pesudo neutral stability growth rate’. The ‘critical’ Reynolds number of the 
unsteady flow is then the maximum Re, value for which the growth rate of the least 
stable mode is less than or equal to the ‘pseudo neutral stability growth rate’. Such 
a definition makes it possible to quantify theoretically (by the S Re value) the degree 
of stabilization due to the oscillation (see figure 13). 

All experimental laminar-transition curves (figure 13) indicate that the oscillation 
initially stabilizes the basic flow as the amplitude of oscillation is increased from zero. 
Increasing A above a certain value, however, results in a decrease &Re. The beginning 
of this descending portion of the &Re vs. A curves in figure 13 is strongly A dependent. 
Gilbrech & Combs’ (1963) and Tozzi’s (1982) theoretical neutral stability curves and 
our data show the ascending portions also to be strongly A dependent while 
Sarpkaya’s (1966) data show virtually no h dependence (see figure 13). The theoretical 
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FIQURE 13. Comparison between experimental and theoretical neutral stability curves. -, 
Sarpkaya ( 1  966) ; - - - -, Gilbrech & Combs (1963) ; -.---.----- , present results; ---- , linear 
stability analysis, h = 5.8, Tozzi (1982); ---, quasi-steady-analysis, Davis (1976). 

study of Tozzi, however, does not predict the descending portions of the neutral 
stability curves, i.e. he predicts no destabilization at higher oscillation amplitudes. 
Note that for the ascending portions, there is a good agreement between our data 
for h = 6.25 with the A = 6.5 curve of Gilbrech & Combs. All of our neutral stability 
curves fall below the curves of Sarpkaya and Davis. As already mentioned, this is 
to be expected in view of the difference between transition and critical Reynolds 
numbers Retr and Re,,,. Tozzi’s linear stability analysis, however, indicates relatively 
decreased stabilization of the flow by the oscillation. 

Further experimental investigations are necessary to explain the good correspon- 
dence between the ascending portions of our A = 5 curve and the results of Sarpkaya 
(figure 13). Those studies, including detailed investigations of the inlet region of the 
pipe, should also provide some explanation for the large discrepancy between the 
h = 4 data of Sarpkaya and ours. 

The modulation amplitudes separating the ascending and descending portions of 
the laminar-transition curves (figure 11) are shown as curve a (with Remw ordinate) 
in figure 14. This curve shows that with increasing A ,  the maximum Remw value which 
keeps the flow stable first increases and then decreases. At h = 4, the unsteady flow 
remains ‘stabilized’ up to the highest modulation amplitude. If the frequency of 
oscillation is further increased (i.e. h > 4), the transitional Reynolds number starts 
to decrease at already lower modulation amplitudes. Curve b (with Remw ordinate) 
in figure 14 demarcates the domain where the ‘plug’ occurs randomly in time (shaded 
area) from the domain where the plug occurs phase-locked with the excitation. Note 
that for A between 6.25 and 20, curves a and b nearly coincide. In this range, the 
minimum oscillation amplitude necessary for phase locked occurrence of turbulent 
plugs is also separating the ascending and descending portions of the laminar 
transition curves in figure 11. At high modulation frequencies (i.e. h > 33), the 
turbulent plugs occurred randomly in time even at very high modulation amplitudes, 
whereas a t  low h they occurred phase locked at already low Remw values. This is to 
be expected because at low h values the instantaneous Reynolds number Re(t) should 
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FIQURE 14. Curve a : Maximum modulation amplitudes separating the ascending and descending 
portions of the neutral stability curves shown in figure 11  (a) ( ( A ,  Re,,)-coordinates). Curve b : 
Separating flow conditions for which the turbulent 'plugs' occur randomly in time or phase locked 
with the flow oscillation ( ( A ,  Re,,)-coordinates). Curve c: Maximum transition Reynolds number 
as a function of the oscillation frequency ( ( A ,  Ret,, ,,,)-coordinates). 

be the appropriate flow parameter. A t  high h values, where Re, is the controlling 
parameter, the turbulent plugs occur randomly in time as in steady flow at the same 
mean Reynolds number. Finally, the maximum possible transition Reynolds number 
Re,,, max as a function of h is shown in figure 14 as curve c (with Re,,, max ordinate). 
Re,, is increased by about 65 % over the steady flow value of 2000 at h = 5,  whereas 
high frequency modulations (i.e. at A > 10) produce at most only a slight increase 
in Re,,. 

3.5. Transition Reynolds number as a function of h 
The effect of the frequency of modulation on Retr is shown in figure 15(a) for three 
Re,, values, and in figure 15(b) for three values of A. Note that data in 
figures 15 (a, b) do not correspond directly. For a fixed Re,,, the Retr value first 
increases rapidly, reaches a maximum value at A x 5,  then decreases to the steady 
flow value of 2000 at very high frequencies. At h x 70, inertia forces strongly reduce 
the modulation amplitude. It was therefore not possible to determine Retr at h = 70 
for the highest modulation amplitude in figure 15. The decrease in Re,, for A between 
5 and 10 is very rapid at high modulation amplitudes and becomes more gradual as 
Re,, is decreased. This rapid decrease of Re,, is associated with a change in the 
occurrence of the plugs from being phase random at A x 5 to phase-locked at h = 10. 
In his paper, Sarpkaya (1966) did not present the Recr ws. h stability curves. Of 
course, these curves can be reconstructed from his Recr 0s. A data but for low 
A values only ; his upper h limit of 7.8 disallows a clear detection of the descending part 
of the neutral stability curves (see figure 15b), whereas for high A his lower A 
limit of 4 disallows the ascending portion to be observed. 

Increasing A from 1 to 5 results in a rapid increase in Re,, for high Remw and A ,  
but a more gradual increase for low Remw and A .  For unsteady flow at h x 3, Re,, 
remains about the same as for the steady flow for up to very high modulation 
amplitudes, all curves essentially passing through the points: h x 3, Re,, x 2000 
(figure 15a). At Remw = 1400 and 1 < h < 2, plugs were observed at  the minimum 
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FIQURE 15. Neutral stability curves separating laminar-tranition regions in the 
(Re,,,h)-plane; (a) at constant Re,,; (b )  at constant A .  

possible Re, value of 1400 (see figure 12b) ,  which accounts for the A-independence 
of the Remw = 1400 curve in figure 15(a), for the 1 < A < 2 range. Note that large 
variations in Re,, with respect to A are confined to  1 < A < 10 (figures 15a, b )  
when the shape of the velocity profile is highly A dependent; see Uchida (1956). For 
A > 10, the Re,, YS. A become more gradual, as does the change of the velocity profile 
with A. 

It would be interesting to know where the A value calculated with the frequency 
of the principal disturbance mode (the disturbance mode with the largest real part 
of the Floquet exponent (von Kerczek & Davis 1974)) falls on the Re,, vs. A stability 
curves in figure 15. Unfortunately, such a comparison is not possible as linear 
stability analysis of fully-developed pipe flow has, up to now, failed to prove the 
existence of any unstable mode. 
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FIQURE 16 (a ,  c). For caption see facing page. 

3.6. Frequency bandwidth and modulation amplitude range for stability 
For a given mean Reynolds number Re,,, a t  which the flow is otherwise unstable, 
modulation can stabilize the flow if the modulation frequency is within a certain 
bandwidth or the modulation amplitude is within a certain range. The bandwidth 
of frequencies that stabilizes the flow (call i t  stabilization bandwidth Ah,) is a strong 
function of Re, and Re,,,,. Figures 16 (a)-(c) document the laminar-transition 
boundaries in the ( A ,  Re,,)- and ( A ,  Re,,)-planes, parametric in values of Re,. For 
a given Re,,,,, AAs decreases with increasing Re,. For a fixed Re,, AA, increases with 
increasing Remw until it  reaches a maximum before decreasing sharply when Re, is 
low but more gradually when Re, is high. The maximum value of the stable 
bandwidth Ah, depends on Re,, the value being lower for higher Re, (figure 16a). 
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FIGURE 16. (a) Neutral stability curves in the (Re,,, /\)-plane for mean Reynolds numbers above 
2000. (a) Neutral stability curves in the (Re,,, A)-plane for mean Reynolds numbers below 2000. 
_ _ _  , Sergeev’s (1966) data for Re, = 0. ( c )  Neutral stability curves in the (Re,,, A)-plane for mean 
Reynolds numbers above 2000. 

Note that the minimum modulation amplitude needed for the unsteady flow to be 
stabilized is strongly dependent on Re,. This minimum Re,, value increases with 
increasing Re,. For the limiting case Re, + 2000, the laminal-transition boundary 
on the left side of the closed curves in figure 16(a) asymptotically approaches the 
ordinate (i.e. the (Re,, = 0)-axis). An increase in the mean Reynolds number reduces 
the area of the stable domain in the ( A ,  Re,,)-plane. Furthermore, the stable domain 
for a given Re, is entirely included in that for a comparatively lower Re,, as is to 
be expected. 

For Re, = 2000 and h < 3, destabilization of the unsteady flow occurs over the 
entire Re,, range. As Re, is decreased below 2000 - the steady-flow transition 
Reynolds number - destabilization occurs for h < 1 at modulation amplitudes 
higher than (2000-Rem) the quasi-steady value (see figure 16b). As h is increased, 
destabilization occurs at higher modulation amplitudes. (A logarithmic A scale is 
chosen in figure 16 ( b )  to emphasize the data at low A.) Gradually decreasing the Re, 
value below 2000 also results in an increase of Ah,; this bandwidth broadening 
increases with decreasing Re,,. For Re, < 2000, AA, becomes infinite as Re,, goes 
to zero, i.e. the flow becomes absolutely stable. 

For h < 3, gradually decreasing Re, also results in an increase of the maximum 
modulation amplitude allowed for the pulsatile flow to remain laminar. Note that 
for h < 1, the laminar-transition boundary becomes independent of A ,  since the flow 
is quasi-steady in this h-range. For Re, < 2000, increasing A from 1 to 4 results in 
an increase of the modulation amplitude range allowed for stability. It is interesting 
to note that (some of) the laminar-transition boundaries tend to merge a t  h - 4, 
Re,, x 2050. 

With decreasing Re, at  a given Remw, the flow should progressively approach the 
Stokes layer. Data for Re, = 0 by Sergeev (1966) are also included in figure 16(b). 
In  our case, we could not cover extensive Re, data for we were limited to the 
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Re,,,, < Re, range because of apparatus limitations. It will be quite interesting to 
cover the cases of Re, < Re,,,, and see how the laminal-transition boundary changes 
in the limit Re,+O. The low Re, cases are also relevant to human arterial flows 
(Stettler, Niederer & Anliker 1981). 

As in Stokes layers, the modulation amplitude of the free stream (say, centreline) 
velocity may be more interesting than the modulation amplitude of the cross-sectional 
mean flow. With this in mind, the laminar-transition boundary is thus shown in the 
( A ,  Re,,)-plane for various Re, values (figure 16c). Qualitatively, these curves show 
the same trends as the one shown in figure 16 (a) ; they are included for completeness. 

This research was funded by the Office of Naval Research under Grant 
N00014-85-K-0126. We are grateful to Drs Bob Whitehead and Mike Reischman for 
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